Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH
نویسندگان
چکیده
Fluorescence ratio imaging microscopy (Tanasugarn, L., P. McNeil, G. Reynolds, and D. L. Taylor, 1984, J. Cell Biol., 98:717-724) has been used to measure the spatial variations in cytoplasmic pH of individual quiescent and nonquiescent Swiss 3T3 cells. Fundamental issues of ratio imaging that permit precise and accurate temporal and spatial measurements have been addressed including: excitation light levels, lamp operation, intracellular probe concentrations, methods of threshold selection, photobleaching, and spatial signal-to-noise ratio measurements. Subcellular measurements can be measured accurately (less than 3% coefficient of variation) in an area of 3.65 microns 2 with the present imaging system. Quiescent Swiss 3T3 cells have a measured cytoplasmic pH of 7.09 (0.01 SEM), whereas nonquiescent cells have a pH of 7.35 (0.01 SEM) in the presence of bicarbonate buffer. A unimodal distribution of mean cytoplasmic pH in both quiescent and nonquiescent cells was identified from populations of cells measured on a cell by cell basis. Therefore, unlike earlier studies based on cell population averages, it can be stated that cells in each population exhibit a narrow range of cytoplasmic pH. However, the mean cytoplasmic pH can change based on the physiological state of the cells. In addition, there appears to be little, if any, spatial variation in cytoplasmic pH in either quiescent or nonquiescent Swiss 3T3 cells. The pH within the nucleus was always the same as the surrounding cytoplasm. These values will serve as a reference point for investigating the role of temporal and spatial variations in cytoplasmic pH in a variety of cellular processes including growth control and cell movement.
منابع مشابه
Multi-dimensional resolution of elementary Ca2+ signals by simultaneous multi-focal imaging.
Elementary events such as puffs and sparks are cytosolic microdomains of Ca2+ from which cellular Ca2+ signals are constructed. Because of the tight localization and fast kinetics of elementary events, imaging studies have been hindered by instrumental limitations of confocal and deconvolution fluorescence microscopy which necessitate compromises between spatial and temporal resolution. Here, w...
متن کاملFluorescence Ratio Imaging
In this paper, the properties of the mean and variance of three estimators of the ratio between two random variables x, y are discussed. Given n samples of x and y we can construct two different estimators. One is biased and the other is asymptotically unbiased. Using the noise characteristics (variance, covariance) a third, unbiased estimator can be constructed. 1. Introduction In fluorescence...
متن کاملMicrospectrofluorometry by digital image processing: measurement of cytoplasmic pH
An interface of our microspectrofluorometer with an image processing system performs microspectrofluorometric measurements in living cells by digital image processing. Fluorescence spectroscopic parameters can be measured by digital image processing directly from microscopic images of cells, and are automatically normalized for pathlength and accessible volume. Thus, an accurate cytoplasmic "ma...
متن کاملLow Temperature-Induced Cytoplasmic Acidosis in Cultured Mung Bean (Vigna radiata [L.] Wilczek) Cells.
Cold-induced changes in vivo in the cytoplasmic pH of suspension-cultured cells of mung bean (Vigna radiata [L.] Wilczek) were investigated by fluorescence-ratio imaging cryomicroscopy with special reference to the variations in the chilling sensitivity of cells during the growth cycle. Because of the preferential localization of the fluorophore in the cytoplasm under specified conditions and t...
متن کاملSpectral imaging microscopy demonstrates cytoplasmic pH oscillations in glial cells.
Glial cells exhibit distinct cellular domains, somata, and filopodia. Thus the cytoplasmic pH (pH(cyt)) and/or the behavior of the fluorescent ion indicator might be different in these cellular domains because of distinct microenvironments. To address these issues, we loaded C6 glial cells with carboxyseminaphthorhodafluor (SNARF)-1 and evaluated pH(cyt) using spectral imaging microscopy. This ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 104 شماره
صفحات -
تاریخ انتشار 1987